m.afternoon-college-program-blended.prestasi.web.id 17 Hours Information Services
Tel/Fax : 021-8762002, 8762003, 8762004, 87912360
Mobile/SMS : 081 1110 4824 27, 0812 9526 2009, 08523 1234 000
WhatsApp : 0817 0816 486, 0812 9526 2009
email : _Contact Us__ please click
Chatting dengan Staf :
ggkarir.com
ggiklan.com
Select Language :     ID   EN   Request Catalog / Brochure (free via post)   Encyclopedia Job Vacancy Advert

   
Search  
    Telecommunication Engineering

    Prev  (Barcode Scanner (application)) (Barnes & Noble Nook)  Next    

Barcode

A UPC-A barcode symbol

A barcode is an optical machine-readable representation of data relating to the object to which it is attached. Originally barcodes systematically represented data by varying the widths and spacings of parallel lines, and may be referred to as linear or one-dimensional (1D). Later they evolved into rectangles, dots, hexagons and other geometric patterns in two dimensions (2D). Although 2D systems use a variety of symbols, they are generally referred to as barcodes as well. Barcodes originally were scanned by special optical scanners called barcode readers. Later, scanners and interpretive software became available on devices including desktop printers and smartphones.

The first use of barcodes was to label railroad cars, but they were not commercially successful until they were used to automate supermarket checkout systems, a task for which they have become almost universal. Their use has spread to many other tasks that are generically referred to as automatic identification and data capture (AIDC). The very first scanning of the now ubiquitous Universal Product Code (UPC) barcode was on a pack of Wrigley Company chewing gum in June 1974.[1]

Other systems have made inroads in the AIDC market, but the simplicity, universality and low cost of barcodes has limited the role of these other systems until the 2000s (decade), over 40 years after the introduction of the commercial barcode, with the introduction of technologies such as radio frequency identification, or RFID.

Contents

History

In 1948 Bernard Silver, a graduate student at Drexel Institute of Technology in Philadelphia, Pennsylvania, USA overheard the president of the local food chain, Food Fair, asking one of the deans to research a system to automatically read product information during checkout.[2] Silver told his friend Norman Joseph Woodland about the request, and they started working on a variety of systems. Their first working system used ultraviolet ink, but the ink faded too easily and was fairly expensive.[3]

Convinced that the system was workable with further development, Woodland left Drexel, moved into his father's apartment in Florida, and continued working on the system. His next inspiration came from Morse code, and he formed his first barcode from sand on the beach. "I just extended the dots and dashes downwards and made narrow lines and wide lines out of them."[3] To read them, he adapted technology from optical soundtracks in movies, using a 500-watt light bulb shining through the paper onto an RCA935 photomultiplier tube (from a movie projector) on the far side. He later decided that the system would work better if it were printed as a circle instead of a line, allowing it to be scanned in any direction.

On 20 October 1949 Woodland and Silver filed a patent application for "Classifying Apparatus and Method", in which they described both the linear and bullseye printing patterns, as well as the mechanical and electronic systems needed to read the code. The patent was issued on 7 October 1952 as US Patent 2,612,994. In 1951, Woodland moved to IBM and continually tried to interest IBM in developing the system. The company eventually commissioned a report on the idea, which concluded that it was both feasible and interesting, but that processing the resulting information would require equipment that was some time off in the future.

IBM offered to buy the patent, but its offer was not high enough. Philco purchased their patent in 1962 and then sold it to RCA sometime later.[3]

Collins at Sylvania

During his time as an undergraduate, David Collins worked at the Pennsylvania Railroad and became aware of the need to automatically identify railroad cars. Immediately after receiving his master's degree from MIT in 1959, he started work at GTE Sylvania and began addressing the problem. He developed a system called KarTrak using blue and yellow reflective stripes attached to the side of the cars, encoding a six-digit company identifier and a four-digit car number.[3] Light reflected off the stripes was fed into one of two photomultipliers, filtered for blue or yellow.[citation needed]

The Boston and Maine Railroad tested the KarTrak system on their gravel cars in 1961. The tests continued until 1967, when the Association of American Railroads (AAR) selected it as a standard, Automatic Car Identification, across the entire North American fleet. The installations began on October 10, 1967. However, the economic downturn and rash of bankruptcies in the industry in the early 1970s greatly slowed the rollout, and it was not until 1974 that 95% of the fleet was labeled. To add to its woes, the system was found to be easily fooled by dirt in certain applications, which greatly affected accuracy. The AAR abandoned the system in the late 1970s, and it was not until the mid-1980s that they introduced a similar system, this time based on radio tags.[4]

The railway project had failed, but a toll bridge in New Jersey requested a similar system so that it could quickly scan for cars that had purchased a monthly pass. Then the U.S. Post Office requested a system to track trucks entering and leaving their facilities. These applications required special retroreflector labels. Finally, Kal Kan asked the Sylvania team for a simpler (and cheaper) version which they could put on cases of pet food for inventory control.

Computer Identics Corporation

In 1967, with the railway system maturing, Collins went to management looking for funding for a project to develop a black-and-white version of the code for other industries. They declined, saying that the railway project was large enough and they saw no need to branch out so quickly.

Collins then quit Sylvania and formed Computer Identics Corporation.[3] Computer Identics started working with helium-neon lasers in place of light bulbs, scanning with a mirror to locate the barcode anywhere up to several feet in front of the scanner. This made the entire process much simpler and more reliable, as well as allowing it to deal with damaged labels by reading the intact portions.

Computer Identics Corporation installed one of its first two scanning systems in the spring of 1969 at a General Motors (Buick) factory in Flint, Michigan.[3] The system was used to identify a dozen types of transmissions moving on an overhead conveyor from production to shipping. The other scanning system was installed at General Trading Company's distribution center in Carlstadt, New Jersey to direct shipments to the proper loading bay.

Universal Product Code

In 1966 the National Association of Food Chains (NAFC) held a meeting where they discussed the idea of automated checkout systems. RCA had purchased rights to the original Woodland patent, attended the meeting and initiated an internal project to develop a system based on the bullseye code. The Kroger grocery chain volunteered to test it.

In mid-1970, the NAFC established the U.S. Supermarket Ad Hoc Committee on a Uniform Grocery Product Code, which set guidelines for barcode development and created a symbol selection subcommittee to help standardize the approach. In cooperation with consulting firm McKinsey & Co., they developed a standardized 11-digit code to identify any product. The committee then sent out a contract tender to develop a barcode system to print and read the code. The request went to Singer, National Cash Register (NCR), Litton Industries, RCA, Pitney-Bowes, IBM and many others.[5] A wide variety of barcode approaches were studied, including linear codes, RCA's bullseye concentric circle code, starburst patterns and others.

In the spring of 1971 RCA demonstrated their bullseye code at another industry meeting. IBM executives at the meeting noticed the crowds at the RCA booth and immediately developed their own system. IBM marketing specialist Alec Jablonover remembered that the company still employed Woodland, and he established a new facility in North Carolina to lead development.

In July 1972 RCA began an eighteen-month test in a Kroger store in Cincinnati. Barcodes were printed on small pieces of adhesive paper, and attached by hand by store employees when they were adding price tags. The code proved to have a serious problem. During printing, presses sometimes smear ink in the direction the paper is running, rendering the code unreadable in most orientations. A linear code, like the one being developed by Woodland at IBM, however, was printed in the direction of the stripes, so extra ink simply makes the code "taller" while remaining readable, and on April 3, 1973 the IBM UPC was selected by NAFC as their standard. IBM had designed five versions of the UPC symbology for future industry requirements: UPC A, B, C, D, and E.[6]

NCR installed a testbed system at Marsh's Supermarket in Troy, Ohio, near the factory that was producing the equipment. On June 26, 1974, Clyde Dawson pulled a 10-pack of Wrigley's Juicy Fruit gum out of his basket and it was scanned by Sharon Buchanan at 8:01 am. The pack of gum and the receipt are now on display in the Smithsonian Institution. It was the first commercial appearance of the UPC.[7]

In 1971 IBM had assembled a team for an intensive planning session, day after day, 12 to 18 hours a day, to thrash out how the whole system might operate and to schedule a roll-out plan. By 1973 they were meeting with grocery manufacturers to introduce the symbol that would need to be printed on the packaging or labels of all of their products. There were no cost savings for a grocery to use it unless at least 70% of the grocery's products had the barcode printed on the product by the manufacturer. IBM was projecting that 75% would be needed in 1975. Even though that was achieved, there were still scanning machines in fewer than 200 grocery stores by 1977.[8]

Economic studies conducted for the grocery industry committee projected over $40 million in savings to the industry from scanning by the mid-1970s. Those numbers were not achieved in that time-frame and some predicted the demise of barcode scanning.[who?] The usefulness of the barcode required the adoption of expensive scanners by a critical mass of retailers while manufacturers simultaneously adopted barcode labels. Neither wanted to move first and results were not promising for the first couple of years, with Business Week proclaiming "The Supermarket Scanner That Failed."[7]

Experience with barcode scanning in those stores revealed additional benefits. The detailed sales information acquired by the new systems allowed greater responsiveness to customer needs. This was reflected in the fact that about 5 weeks after installing barcode scanners, sales in grocery stores typically started climbing and eventually leveled off at a 10-12% increase in sales that never dropped off. There also was a 1–2% decrease in operating cost for the stores that enabled them to lower prices to increase market share. It was shown in the field that the return on investment for a barcode scanner was 41.5%. By 1980, 8,000 stores per year were converting.[8]

The global public launch of the barcode was greeted with minor skepticism from conspiracy theorists, who considered barcodes to be an intrusive surveillance technology, and from some Christians who thought the codes hid the number 666, representing the number of the beast.[9] Television host Phil Donahue described barcodes as a "corporate plot against consumers".[10]

Industrial adoption

In 1981, the United States Department of Defense adopted the use of Code 39 for marking all products sold to the United States military. This system, Logistics Applications of Automated Marking and Reading Symbols (LOGMARS), is still used by DoD and is widely viewed as the catalyst for widespread adoption of barcoding in industrial uses.[11]

Use

Barcodes such as the UPC have become a ubiquitous element of modern civilization, as evidenced by their enthusiastic adoption by stores around the world; almost every item other than fresh produce from a grocery store, department store, and mass merchandiser has a UPC barcode on it.[citation needed] This helps track items and also reduces instances of shoplifting involving price tag swapping, although shoplifters can now print their own barcodes.[12] In addition, retail chain membership cards (issued mostly by grocery stores and specialty "big box" retail stores such as sporting equipment, office supply, or pet stores) use bar codes to uniquely identify consumers, allowing for customized marketing and greater understanding of individual consumer shopping patterns. At the point of sale, shoppers can get product discounts or special marketing offers through the address or e-mail address provided at registration.

Example of barcode on a patient identification wristband

Barcodes can allow for the organization of large amounts of data. They are widely used in the healthcare and hospital settings, ranging from patient identification (to access patient data, including medical history, drug allergies, etc.) to creating SOAP Notes[13] with barcodes to medication management. They are also used to facilitate the separation and indexing of documents that have been imaged in batch scanning applications, track the organization of species in biology,[14] and integrate with in-motion checkweighers to identify the item being weighed in a conveyor line for data collection.

They can also be used to keep track of objects and people; they are used to keep track of rental cars, airline luggage, nuclear waste, registered mail, express mail and parcels. Barcoded tickets allow the holder to enter sports arenas, cinemas, theatres, fairgrounds, and transportation, and are used to record the arrival and departure of vehicles from rental facilities etc. This can allow proprietors to identify duplicate or fraudulent tickets more easily. Barcodes are widely used in shop floor control applications software where employees can scan work orders and track the time spent on a job.

Barcoded parcel

Barcodes are also used in some kinds of non-contact 1D and 2D position sensors. A series of barcodes are used in some kinds of absolute 1D linear encoder. The barcodes are packed close enough together that the reader always has one or two barcodes in its field of view. The relative position of the barcode in the field of view of the reader gives incremental precise positioning, in some cases with sub-pixel resolution. The data decoded from the barcode gives the absolute coarse position. An "address carpet", such as Howell's binary pattern and the Anoto dot pattern, is a 2D barcode designed so that a reader, even though only a tiny portion of the complete carpet is in the field of view of the reader, can find its absolute X,Y position and rotation in the carpet.[15][16]

Some 2D barcodes embed a hyperlink to a web page. A capable cellphone might be used to read the pattern and browse the linked website, which can help a shopper find the best price for an item in the vicinity. Since 2005, airlines use an IATA-standard 2D barcode on boarding passes (BCBP), and since 2008 2D barcodes sent to mobile phones enable electronic boarding passes.[17]

Some applications for barcodes have fallen out of use; In the 1970s and 1980s, software source code was occasionally encoded in a barcode and printed on paper( Cauzin Softstrip and Paperbyte[18] are barcode symbologies specifically designed for this application.), and the 1991 Barcode Battler computer game system used any standard barcode to generate combat statistics.

In the 21st century, many artists have started using barcodes in art, such as Scott Blake's Barcode Jesus, as part of the post-modernism movement.

Symbologies

The mapping between messages and barcodes is called a symbology. The specification of a symbology includes the encoding of the single digits/characters of the message as well as the start and stop markers into bars and space, the size of the quiet zone required to be before and after the barcode as well as the computation of a checksum.

Linear symbologies can be classified mainly by two properties:

  • Continuous vs. discrete: Characters in continuous symbologies usually abut, with one character ending with a space and the next beginning with a bar, or vice versa. Characters in discrete symbologies begin and end with bars; the intercharacter space is ignored, as long as it is not wide enough to look like the code ends.
  • Two-width vs. many-width: Bars and spaces in two-width symbologies are wide or narrow; the exact width of a wide bar has no significance as long as the symbology requirements for wide bars are adhered to (usually two to three times wider than a narrow bar). Bars and spaces in many-width symbologies are all multiples of a basic width called the module; most such codes use four widths of 1, 2, 3 and 4 modules.

Some symbologies use interleaving. The first character is encoded using black bars of varying width. The second character is then encoded, by varying the width of the white spaces between these bars. Thus characters are encoded in pairs over the same section of the barcode. Interleaved 2 of 5 is an example of this.

Stacked symbologies repeat a given linear symbology vertically.

The most common among the many 2D symbologies are matrix codes, which feature square or dot-shaped modules arranged on a grid pattern. 2-D symbologies also come in circular and other patterns and may employ steganography, hiding modules within an image (for example, DataGlyphs).

Linear symbologies are optimized for laser scanners, which sweep a light beam across the barcode in a straight line, reading a slice of the barcode light-dark patterns. Stacked symbologies are also optimized for laser scanning, with the laser making multiple passes across the barcode.

In the 1990s development of charge coupled device (CCD) imagers to read barcodes was pioneered by Welch Allyn. Imaging does not require moving parts, as a laser scanner does. In 2007, linear imaging had begun to supplant laser scanning as the preferred scan engine for its performance and durability.

2-D symbologies cannot be read by a laser as there is typically no sweep pattern that can encompass the entire symbol. They must be scanned by an image-based scanner employing a CCD or other digital camera sensor technology.

Scanners (barcode readers)

The earliest, and still the cheapest, barcode scanners are built from a fixed light and a single photosensor that is manually "scrubbed" across the barcode.

Barcode scanners can be classified into three categories based on their connection to the computer. The older type is the RS-232 barcode scanner. This type requires special programming for transferring the input data to the application program.

"Keyboard interface scanners" connect to a computer using a PS/2 or AT keyboard–compatible adaptor cable (a "keyboard wedge"). The barcode's data is sent to the computer as if it had been typed on the keyboard.

Like the keyboard interface scanner, USB scanners are easy to install and do not need custom code for transferring input data to the application program. On PCs running windows the HID interface emulates the data merging action of a hardware "keyboard wedge", and the scanner automatically behaves like an additional keyboard.

Barcode scanners can be used in Google's mobile Android operating system via both their own Google Goggles application or 3rd party barcode scanners like Scan.[19] Nokia's Symbian operating system features a barcode scanner,[20] while mbarcode[21] is a QR code reader for the Maemo operating system. In the Apple iOS, a barcode reader is not natively included but more than fifty paid and free apps are available with both scanning capabilities and hard-linking to URI. With BlackBerry devices, the App World application can natively scan barcodes and load any recognized Web URLs on the device's Web browser. Windows Phone 7.5 is able to scan barcodes through the Bing search app.

Quality control and verification

Barcode verification examines scanability and the quality of the barcode in comparison to industry standards and specifications. Barcode verifiers are primarily used by businesses that print and use barcodes. Any trading partner in the supply chain can test barcode quality. It is important to verify a barcode to ensure that any reader in the supply chain can successfully interpret a bar code with a low error rate. Retailers levy large penalties for non-compliant barcodes. These chargebacks can reduce a manufacturer's revenue by 2% to 10%.[22]

A barcode verifier works the way a reader does, but instead of simply decoding a barcode, a verifier performs a series of tests. For linear barcodes these tests are:

  • Edge Determination
  • Minimum Reflectance
  • Symbol Contrast
  • Minimum Edge Contrast
  • Modulation
  • Defects
  • Decode
  • Decodability

2D matrix symbols look at the parameters:

  • Symbol Contrast
  • Modulation
  • Decode
  • Unused Error Correction
  • Fixed (finder) Pattern Damage
  • Grid Non-uniformity
  • Axial Non-uniformity[23]

Depending on the parameter, each ANSI test is graded from 0.0 to 4.0 (F to A), or given a pass or fail mark. Each grade is determined by analyzing the scan reflectance profile (SRP), an analog graph of a single scan line across the entire symbol. The lowest of the 8 grades is the scan grade and the overall ISO symbol grade is the average of the individual scan grades. For most applications a 2.5 (C) is the minimum acceptable symbol grade.[24]

Compared with a reader, a verifier measures a barcode's optical characteristics to international and industry standards. The measurement must be repeatable and consistent. Doing so requires constant conditions such as distance, illumination angle, sensor angle and verifier aperture. Based on the verification results, the production process can be adjusted to print higher quality barcodes that will scan down the supply chain.

Barcode verifier standards

  • Barcode verifiers should comply with the ISO/IEC 15416 (linear)] or ISO/IEC 15426-2 (2D).

This standard defines the measuring accuracy of a bar code verifier.

  • The current international barcode quality specification is ISO/IEC 15416 (linear) and ISO/IEC 15415 (2D). The European Standard EN 1635 has been withdrawn and replaced by ISO/IEC 15416. The original U.S. barcode quality specification was ANSI X3.182. (UPCs used in the US – ANSI/UCC5).

This standard defines the quality requirements for barcodes and Matrix Codes (also called Optical Codes).

  • As of 2011 the ISO workgroup JTC1 SC31 was developing a Direct Part Marking (DPM) quality standard : ISO/IEC TR 29158.[25]

International standards are available from the International Organization for Standardization (ISO).[26]

These standards are also available from local/national standardization organizations, such as ANSI, BSI, DIN, NEN and others.

Benefits

In point-of-sale management, barcode systems can provide detailed up-to-date information on the business, accelerating decisions and with more confidence. For example:

  • Fast-selling items can be identified quickly and automatically reordered.
  • Slow-selling items can be identified, preventing inventory build-up.
  • The effects of merchandising changes can be monitored, allowing fast-moving, more profitable items to occupy the best space.
  • Historical data can be used to predict seasonal fluctuations very accurately.
  • Items may be repriced on the shelf to reflect both sale prices and price increases.
  • This technology also enables the profiling of individual consumers, typically through a voluntary registration of discount cards. While pitched as a benefit to the consumer, this practice is considered to be potentially dangerous by privacy advocates.

Besides sales and inventory tracking, barcodes are very useful in logistics.

  • When a manufacturer packs a box for shipment, a Unique Identifying Number (UID) can be assigned to the box.
  • A database can link the UID to relevant information about the box; such as order number, items packed, qty packed, destination, etc.
  • The information can be transmitted through a communication system such as Electronic Data Interchange (EDI) so the retailer has the information about a shipment before it arrives.
  • Shipments that are sent to a Distribution Center (DC) are tracked before forwarding. When the shipment reaches its final destination, the UID gets scanned, so the store knows the shipment's source, contents, and cost.

Barcode scanners are relatively low cost and extremely accurate compared to key-entry, with only about 1 substitution error in 15,000 to 36 trillion characters entered.[27][unreliable source?] The exact error rate depends on the type of barcode.

Types of barcodes

Linear barcodes

A first generation, "one dimensional" barcode that is made up of lines and spaces of various widths that create specific patterns.

SymbologyContinuous
or
discrete
Bar widthsUses
U.P.C.ContinuousManyWorldwide retail, GS1-approved – International Standard ISO/IEC 15420
CodabarDiscreteTwoOld format used in libraries and blood banks and on airbills (out of date)
Code 25 – Non-interleaved 2 of 5ContinuousTwoIndustrial
Code 25 – Interleaved 2 of 5ContinuousTwoWholesale, libraries International standard ISO/IEC 16390
Code 39DiscreteTwoVarious – international standard ISO/IEC 16388
Code 93ContinuousManyVarious
Code 128ContinuousManyVarious – International Standard ISO/IEC 15417
Code 128AContinuousManyVarious – only a CODE 128 character set, not an own symbology
Code 128BContinuousManyVarious – only a CODE 128 character set, not an own symbology
Code 128CContinuousManyVarious – only a CODE 128 character set, not an own symbology
Code 11DiscreteTwoTelephones (out of date)
CPC BinaryDiscreteTwo 
DUN 14ContinuousManyVarious
EAN 2ContinuousManyAddon code (magazines), GS1-approved – not an own symbology – to be used only with an EAN/UPC according to ISO/IEC 15420
EAN 5ContinuousManyAddon code (books), GS1-approved – not an own symbology – to be used only with an EAN/UPC according to ISO/IEC 15420
EAN-8, EAN-13ContinuousManyWorldwide retail, GS1-approved – International Standard ISO/IEC 15420
Facing Identification MarkContinuousOneUSPS business reply mail
GS1-128 (formerly named UCC/EAN-128), incorrectly referenced as EAN 128 and UCC 128ContinuousManyvarious, GS1-approved -is just an application of the Code 128 (ISO/IEC 15417) using the ANS MH10.8.2 AI Datastructures. Its not an own symbology.
GS1 DataBar, formerly Reduced Space Symbology (RSS)ContinuousManyVarious, GS1-approved
HIBC (HIBCC Health Industry Bar Code)DiscreteTwoHealthcare[28] – is a datastructure to be used with Code 128, Code 39 or Data Matrix
ITF-14ContinuousTwoNon-retail packaging levels, GS1-approved – is just an Interleaved 2/5 Code (ISO/IEC 16390) with a few additional specifications, according to the GS1 General Specifications
Latent image barcodeNeitherTall/shortColor print film
PharmacodeNeitherTwoPharmaceutical packaging (no international standard available)
PlesseyContinuousTwoCatalogs, store shelves, inventory (no international standard available)
PLANETContinuousTall/shortUnited States Postal Service (no international standard available)
POSTNETContinuousTall/shortUnited States Postal Service (no international standard available)
Intelligent Mail barcodeContinuousTall/shortUnited States Postal Service, replaces both POSTNET and PLANET symbols (formerly named OneCode)
MSIContinuousTwoUsed for warehouse shelves and inventory
PostBarDiscreteManyCanadian Post office
RM4SCC / KIXContinuousTall/shortRoyal Mail / Royal TPG Post
JANContinuousManyUsed in Japan, similar and compatible with EAN-13 (ISO/IEC 15420)
TelepenContinuousTwoLibraries (UK)

Matrix (2D) barcodes

A matrix code, also termed a 2D barcode or simply a 2D code, is a two-dimensional way to represent information. It is similar to a linear (1-dimensional) barcode, but can represent more data per unit area.

SymbologyNotes
3-DIDeveloped by Lynn Ltd.
ArrayTagFrom ArrayTech Systems.
Aztec CodeDesigned by Andrew Longacre at Welch Allyn (now Honeywell Scanning and Mobility). Public domain. – International Standard ISO/IEC 24778
Small Aztec CodeSpace-saving version of Aztec code.
CodablockStacked 1D barcodes.
Code 1Public domain. Code 1 is currently used in the health care industry for medicine labels and the recycling industry to encode container content for sorting.[29]
Code 16KBased on 1D Code 128.
Code 49Stacked 1D barcodes from Intermec Corp.
ColorCodeColorZip[30] developed colour barcodes that can be read by camera phones from TV screens; mainly used in Korea.[31]
Color Construct CodeColor Construct Code is one of the few barcode symbologies designed to take advantage of multiple colors.[32][33]
Compact Matrix CodeFrom Syscan Group, Inc.
CP CodeFrom CP Tron, Inc.
CyberCodeFrom Sony.
d-touchreadable when printed on deformable gloves and stretched and distorted[34]
DataGlyphsFrom Palo Alto Research Center (also termed Xerox PARC).[35]

Patented.[36] DataGlyphs can be embedded into a half-tone image or background shading pattern in a way that is almost perceptually invisible, similar to steganography.[37][38]

Data MatrixFrom Microscan Systems, formerly RVSI Acuity CiMatrix/Siemens. Public domain. Increasingly used throughout the United States. Single segment Data Matrix is also termed Semacode – Standard: ISO/IEC 16022.
Datastrip CodeFrom Datastrip, Inc.
digital paperpatterned paper used in conjunction with a digital pen to create handwritten digital documents. The printed dot pattern uniquely identifies the position coordinates on the paper.
Dot Code ADesigned for the unique identification of items.
EZcodeDesigned for decoding by cameraphones.[39]
Grid Matrix CodeFrom Syscan Group, Inc.
HD BarcodeDeveloped by Complete Inspection Systems, Inc.
High Capacity Color BarcodeDeveloped by Microsoft; licensed by ISAN-IA.
HueCodeFrom Robot Design Associates. Uses greyscale or colour.[40]
INTACTA.CODEFrom INTACTA Technologies, Inc.
InterCodeFrom Iconlab, Inc. The standard 2D barcode in South Korea. All 3 South Korean mobile carriers put the scanner program of this code into their handsets to access mobile internet, as a default embedded program.
JAGTAGFrom JAGTAG, Inc. Optimized for use with mobile device cameras.
MaxiCodeUsed by United Parcel Service. Now Public Domain
mCodeDeveloped by Nextcode Corporation specifically for camera phone scanning applications. Designed to enable advanced cell mobile applications with standard camera phones.
MiniCodeFrom Omniplanar, Inc.
MicroPDF417Facilitates codes too small to be used in PDF417.
MMCCDesigned to disseminate high capacity mobile phone content via existing colour print and electronic media, without the need for network connectivity
Nintendo e-Reader#Dot codeDeveloped by Olympus Corporation to store songs, images, and mini-games for Game Boy Advance on Pokémon trading cards.
OptarDeveloped by Twibright Labs and published as free software. Aims at maximum data storage density, for storing data on paper. 200 kB per A4 page with laser printer.
PaperDiskHigh density code, used both for data heavy applications (10 K – 1 MB) and camera phones (50+ bits). Developed and patented by Cobblestone Software.[41]
PDF417Originated by Symbol Technologies. Public Domain.
PDMarkDeveloped by Ardaco.
QR CodeInitially developed, patented and owned by Toyota subsidiary Denso Wave for car parts management; who have chosen not to exercise their patent rights. Can encode Japanese Kanji and Kana characters, music, images, URLs, emails. De facto standard for Japanese cell phones. Also used with BlackBerry Messenger to pickup contacts rather than using a PIN code. These codes are also the most frequently used type to scan with smartphones. – International Standard : ISO/IEC 18004
QuickMark CodeFrom SimpleAct Inc.[42]
Secure SealUsed in signature blocks of checks from the United States Treasury.
SmartCodeFrom InfoImaging Technologies.
Snowflake CodeFrom Marconi Data Systems, Inc.
ShotCodeCircular barcodes for camera phones. Originally from High Energy Magic Ltd in name Spotcode. Before that probably termed TRIPCode.
SPARQCodeQR Code encoding standard from MSKYNET, Inc.
SuperCodePublic domain.
TrillcodeFrom Lark Computers. Designed to work with mobile device's camera or webcam PC. Can encode a variety of "actions".
UltraCodeBlack-and-white & colour versions. Public domain. Invented by Jeffrey Kaufman and Clive Hohberger.
UnisCodealso called "Beijing U Code"; a colour 2D barcode developed by Chinese company UNIS
VeriCode, VSCodeFrom Veritec, Inc.
WaterCodeHigh-density 2D Barcode(440 Bytes/cm2) From MarkAny Inc.

Example images

In popular culture

In architecture, a building in Lingang New City by German architects Gerkan, Marg and Partners incorporates a barcode design,[44] as does a shopping mall called Shtrikh-kod (the Russian for barcode) in Narodnaya ulitsa ("People's Street") in the Nevskiy district of St. Petersburg, Russia.[45]

In media, the National Film Board of Canada and ARTE France launched a web documentary entitled Barcode.tv, which allows users to view films about everyday objects by scanning the product's barcode with their iPhone camera.[46][47]

In professional wrestling, the WWE stable D-Generation X incorporated a barcode into their entrance video, as well as on a t-shirt.[48][49]

See also

  • Automated identification and data capture (AIDC)
  • Barcode printer
  • Barcode scanner
  • Bar Coded Boarding Pass (BCBP)
  • Code (disambiguation)
  • European Article Numbering-Uniform Code Council
  • Global Trade Item Number
  • Identifier
  • Inventory control system
  • ISBN
  • Physical world hyperlinks
  • Semacode
  • Sms barcode
  • SPARQCode

References

Notes

  1. ^ Fox, Margalit (June 15, 2011), "Alan Haberman, Who Ushered In the Bar Code, Dies at 81", The New York Times, http://www.nytimes.com/2011/06/16/business/16haberman.html?_r=1&hp&gwh=7657EAA31B3069C9E728CC93FD2695E8
  2. ^ Fishman, Charles (August 1, 2001). "The Killer App – Bar None". American Way. Retrieved 2010-04-19. 
  3. ^ a b c d e f Seideman, Tony, "Barcodes Sweep the World", Wonders of Modern Technology, http://www.barcoding.com/information/barcode_history.shtml
  4. ^ Graham-White, Sean (1999-08). "Do You Know Where Your Boxcar Is?". Trains (Kalmbach Publishing) 59 (8): 48–53. 
  5. ^ George Laurer, "Development of the U.P.C. Symbol", bellsouthpwp.net
  6. ^ Nelson, Benjamin (1997). From Punched Cards To Bar Codes. 
  7. ^ a b Varchaver, Nicholas (2004-05-31). "Scanning the Globe". Fortune. Archived from the original on 14 November 2006. Retrieved 2006-11-27. 
  8. ^ a b Selmeier, Bill (2008). Spreading the Barcode. pp. 26, 214, 236, 238, 244, 245, 236, 238, 244, 245. ISBN 978-0-578-02417-2. 
  9. ^ "What about barcodes and 666: The Mark of the Beast?". Av1611.org. Retrieved 2011-11-28. 
  10. ^ Bishop, Tricia (July 5, 2004). "UPC bar code has been in use 30 years". SFgate.com. Retrieved 22 December 2009. 
  11. ^ "Adams1.com". Adams1.com. Retrieved 2011-11-28. 
  12. ^ "Retrieved November 17, 2011". Iwatchsystems.com. 2011-05-02. Retrieved 2011-11-28. 
  13. ^ Oberfield, Craig. "QNotes Barcode System". US Patented #5296688. Quick Notes Inc. Retrieved 15 December 2012. 
  14. ^ National Geographic, May 2010, page 30
  15. ^ David L. Hecht. "Printed Embedded Data Graphical User Interfaces". Xerox Palo Alto Research Center. IEEE Computer March 2001.
  16. ^ Jon Howell and Keith Kotay. "Landmarks for absolute localization". Dartmouth Computer Science Technical Report TR2000-364, March 2000.
  17. ^ "IATA.org". IATA.org. 2011-11-21. Retrieved 2011-11-28. 
  18. ^ "Paperbyte Bar Codes for Waduzitdo" Byte magazine, 1978 September p. 172
  19. ^ "Scan". 
  20. ^ "Nokia Europe – Nokia N80 – Support". 
  21. ^ "package overview for mbarcode". Maemo.org. Archived from the original on 14 August 2010. Retrieved 28 July 2010. 
  22. ^ Zieger, Anne (October 2003). "Retailer chargebacks: is there an upside? Retailer compliance initiatives can lead to efficiency". Frontline Solutions. Retrieved 2 August 2011. 
  23. ^ "GS1 DataMatrix: An introduction and technical overview of the most advanced GS1 Application Identifiers compliant symbology". Global Standards 1 1.17: 34–36. May 2010. Archived from the original on 20 July 2011. Retrieved 2 August 2011. 
  24. ^ "GS1 Bar Code Verification for Linear Symbols". Global Standards 1 (4.3): 23–32. May 2009. Retrieved 2 August 2011. 
  25. ^ "Technical committees - JTC 1/SC 31 - Automatic identification and data capture techniques". ISO. Retrieved 2011-11-28. 
  26. ^ "ISO web site". Iso.org. Retrieved 2011-11-28. 
  27. ^ Harmon and Adams(1989). Reading Between The Lines, p.13. Helmers Publishing, Inc, Peterborough, New Hampshire, USA. ISBN 0-911261-00-1.
  28. ^ FDA.gov, Health Industry Bar Code (HIBC) supplier labeling standard
  29. ^ Russ Adams (2009-06-15). "2-Dimensional Bar Code Page". Archived from the original on 7 July 2011. Retrieved 2011-06-06. 
  30. ^ "Colorzip.com". Colorzip.com. Retrieved 2011-11-28. 
  31. ^ "Barcodes for TV Commercials". Adverlab.blogspot.com. 2006-01-31. Retrieved 2009-06-10. 
  32. ^ "Colour Code Technologies Co., Ltd". Colourcodetech.com. Retrieved 2012-11-04. 
  33. ^ "Frequently Asked Questions". ColorCCode.net. Retrieved 2012-11-04. 
  34. ^ d-touch topological fiducial recognition; "d-touch markers are applied to deformable gloves", media.mit.edu
  35. ^ See Xerox.com for details.
  36. ^ "DataGlyphs: Embedding Digital Data"
  37. ^ ""DataGlyph" Embedded Digital Data"
  38. ^ "DataGlyphs"
  39. ^ "Scanbuy.com". Scanbuy.com. Retrieved 2011-11-28. 
  40. ^ "BarCode-1 2-Dimensional Bar Code Page". Adams1.com. Retrieved 2009-06-10. 
  41. ^ "PaperDisk.com". PaperDisk.com. Retrieved 2011-11-28. 
  42. ^ "Quickmark.com". Quickmark.com. Retrieved 2011-11-28. 
  43. ^ (株)デンソーウェーブ, denso-wave.com (Japanese) Copyright
  44. ^ Barcode Halls - gmp[dead link]
  45. ^ "image". Peterburg2.ru. Retrieved 2011-11-28. 
  46. ^ Lavigne, Anne-Marie. "Introducing Barcode.tv, a new interactive doc about the objects that surround us". NFB Blog. National Film Board of Canada. Retrieved 7 October 2011. 
  47. ^ Anderson, Kelly (6 October 2011). "NFB, ARTE France launch ‘Bar Code’". Reelscreen. Retrieved 7 October 2011. 
  48. ^ http://www.attitudetees.com/items/dxbarcode.html
  49. ^ https://www.youtube.com/watch?v=BkvplmOtmX4&feature=youtube_gdata_player

Bibliography

  • Automating Management Information Systems: Barcode Engineering and Implementation – Harry E. Burke, Thomson Learning, ISBN 0-442-20712-3
  • Automating Management Information Systems: Principles of Barcode Applications – Harry E. Burke, Thomson Learning, ISBN 0-442-20667-4
  • The Bar Code Book – Roger C. Palmer, Helmers Publishing, ISBN 0-911261-09-5, 386 pages
  • The Bar Code Manual – Eugene F. Brighan, Thompson Learning, ISBN 0-03-016173-8
  • Handbook of Bar Coding Systems – Harry E. Burke, Van Nostrand Reinhold Company, ISBN 978-0-442-21430-2, 219 pages
  • Information Technology for Retail:Automatic Identification & Data Capture Systems – Girdhar Joshi, Oxford University Press, ISBN 0-19-569796-0, 416 pages
  • Lines of Communication – Craig K. Harmon, Helmers Publishing, ISBN 0-911261-07-9, 425 pages
  • Punched Cards to Bar Codes – Benjamin Nelson, Helmers Publishing, ISBN 0-911261-12-5, 434 pages
  • Revolution at the Checkout Counter: The Explosion of the Bar Code – Stephen A. Brown, Harvard University Press, ISBN 0-674-76720-9
  • Reading Between The Lines – Craig K. Harmon and Russ Adams, Helmers Publishing, ISBN 0-911261-00-1, 297 pages
  • The Black and White Solution: Bar Code and the IBM PC – Russ Adams and Joyce Lane, Helmers Publishing, ISBN 0-911261-01-X, 169 pages
  • Sourcebook of Automatic Identification and Data Collection – Russ Adams, Van Nostrand Reinhold, ISBN 0-442-31850-2, 298 pages

External links

    Prev  (Barcode Scanner (application)) (Barnes & Noble Nook)  Next    


World Encyclopedia ➪ AgricultureAnimalArtAstronomyBiographyCharacterChemicalCultureEcologyEconomicsEducationElectronics
EnvironmentFilmGeographyHistoryIndonesiaJabodetabekLanguageLawLiteratureMathematicsMedical
MilitaryMusicMythologyPhilosophyPhysicsPlantPoliticalPuppetReligionScienceSocietySportsTechnology
Manual / Tutorial   ➪ AntApache ServerHTML 4HTML 5JavaScriptMySQLPerlPHPLinuxShell       Network Encyclopedia
Web Network ➪ Employee ClassRegularEvening ClassS2PTSPartyGeneral    
Reference ➪ Internet, Computers, ICT, OS, etc

  » Cyber University   » Fakultas Pertanian UMJ Jakarta   » Fakultas Teknik UMJ   » FISIP UMJ Jakarta   » FKM UMJ   » IBI Kosgoro Jagakarsa   » IBI Kosgoro Jelambar
  » IKIP Widya Darma Surabaya   » IMA   » ISIF Cirebon   » ISTA Jakarta   » ITB STIKOM Bali   » ITBU Jakarta   » ITEKES Tri Tunas Nasional Makassar
  » Magister Universitas Buddhi Dharma   » Magister Universitas Satyagama   » MH UM SURABAYA   » MH UNKRIS Jakarta   » MIA FISIP UMJ Jakarta   » MIA UNKRIS Jakarta   » MIKOM FISIP UMJ Jakarta
  » MM Patria Artha Makassar   » MM STIE ABI Surabaya   » MM STIE Ganesha Jakarta   » MM STIE GICI Business School Jakarta   » MM UMIBA Jakarta   » MM UNKRIS Jakarta   » MPD UM SURABAYA
  » Mpu Tantular Kedoya Jakarta   » MT UNKRIS Jakarta   » Polnas Denpasar   » S2 FISIP UMJ Jakarta   » S2 FT UMJ   » S2 NUSA MANDIRI   » S2 STMIK Jakarta
  » S2 UIN Al-Azhaar Lubuklinggau   » S2 UM SURABAYA   » S2 UNKRIS Jakarta   » S2 UNSURYA   » Sekolah Tinggi Bisnis Runata   » STAI Al-Akbar Surabaya   » STAI Al-Andina Sukabumi
  » STAI Al-Hidayah Tasikmalaya   » STAI Al-Ittihad Cianjur   » STAI Terpadu Yogyakarta   » STBA Lia Yogyakarta   » STEI SEBI Depok   » STEI Yogyakarta   » STIBADA MASA Surabaya
  » STIE ABI Surabaya   » STIE Cendekia Semarang   » STIE Ganesha Jakarta   » STIE GICI Business School Bogor   » STIE GICI Business School Depok   » STIE GICI Business School Bekasi   » STIE GICI Business School Jakarta
  » STIE Hidayatullah Depok   » STIE Indocakti Malang   » STIE PASIM Sukabumi   » STIE PEMUDA Surabaya   » STIE Pioneer Manado   » STIE Trianandra Jakarta   » STIE Widya Darma Surabaya
  » STIE Widya Persada Jakarta   » STIEKIA Bojonegoro   » STIESIA Surabaya   » STIH Awang Long Samarinda   » STIH Gunung Jati Tangerang   » STIH Litigasi Jakarta   » STIH Prof Gayus Lumbuun
  » STIT Al-Hikmah Lampung   » STIT Bustanul Ulum   » STIT Tarbiyatun Nisa Sentul Bogor   » STMIK Jakarta   » STT Bina Tunggal Bekasi   » STT Mandala Bandung   » STT STIKMA Internasional
  » UBHINUS   » UHAMZAH Medan   » UICM Bandung   » UIN Al-Azhaar Lubuklinggau   » UM Palangkaraya   » UM Surabaya   » UNAKI Semarang
  » UNAS   » UNAS PASIM   » UNDARIS Ungaran Semarang   » UNIBA Banyuwangi   » UNISA Kuningan Jawa Barat   » UNISBA   » Univ. Bali Dwipa Denpasar Bali
  » Universitas Boyolali   » Universitas Buddhi Dharma   » Universitas Cokroaminoto Makassar   » Universitas Deli Sumatera   » Universitas Gresik   » Universitas IVET Semarang   » Universitas Kahuripan Kediri
  » Universitas LIA   » Universitas Mahakarya Asia Yogyakarta   » Universitas Mitra Bangsa   » Universitas Mochammad Sroedji Jember   » Universitas Mpu Tantular Jakarta   » Universitas Muhammadiyah Jakarta   » Universitas Musi Rawas Lubuklinggau
  » Universitas Nurtanio   » Universitas Nurul Huda Oku Timur   » Universitas Nusa Mandiri Jatiwaringin   » Universitas Nusa Mandiri Kramat   » Universitas Nusa Mandiri Margonda   » Universitas Nusantara Manado   » Universitas Pandanaran Semarang
  » Universitas Parna Raya Manado   » Universitas Patria Artha Makassar   » Universitas Satyagama   » Universitas Tanri Abeng Jakarta   » Universitas Teknologi Bandung   » Universitas Teknologi Nusantara   » Universitas Teknologi Sulawesi Makassar
  » Universitas Ubudiyah Indonesia Aceh   » Universitas Wijaya Kusuma Surabaya   » Universitas Yarsi Pratama   » Universitas Yuppentek Indonesia   » UNKRIS Jakarta   » UNSUB Subang   » UNSURYA Jakarta
  » UNU Cirebon   » UNU Kalbar Pontianak   » UNU Kaltim Samarinda   » UNUGHA Cilacap   » UNUSIDA   » USM Indonesia Medan   » UWIKA Surabaya
Combined Information Employee Class entire PTS

Al Quran onlineAdvertisingBarter Link232 Countries155 Types of CatsCity & Province WebsitesCPNSComplete POS codeCorruption Rating
Embassy:  KBRI  Foreign  • Exercise Psychotest  • Civitasbook.com  • Hosting: ID World  • Info Prov, City, District, Village  • International Organizations
Islands in NKRIJob VacancyLibrariesNews & Magazine: ID ForeignNKRI, KPK, MA, etc.Political PartyPatriotPTAPTNPTSHospitalRanch
ScholarshipSholat & Imsak ScheduleSMASMKSMPTV & Radio : Foreign IDFootballWorld Statistics     Academic : Majors Prospectus

Department/Study Program (D3, S1, S2), Curriculum, Prospectus (Career Prospects), and Title/Degree
Undergraduate Programs (S-1)
¤ S1 Accounting
¤ S1 Agribusiness
¤ S1 Agricultural Sciences
¤ S1 Agroteknologi (Agricultural Industry Technology)
¤ S1 Akhwal al Syakhsiyyah / Civil Law of Islam (Sharia)
¤ S1 Animal Sciences
¤ S1 Architectural Engineering
¤ S1 Biology Education
¤ S1 Business/Commerce Administration Science
¤ S1 Chemical Engineering
¤ S1 Civil Engineering
¤ S1 Communication Studies
¤ S1 Computer Engineering / Computer Systems
¤ S1 ECD (Early Childhood Teacher Education)
¤ S1 Electrical Engineering
¤ S1 English Education
¤ S1 English Language / Literature
¤ S1 Food Technology
¤ S1 Indonesian Language and Literature Education
¤ S1 Industrial Engineering
¤ S1 Industrial Product Design
¤ S1 Informatics Engineering
¤ S1 Information System
¤ S1 International Relations
¤ S1 Law/Legal Studies
¤ S1 Management
¤ S1 Mathematics Education
¤ S1 Mechanical Engineering
¤ S1 Nursing
¤ S1 OPJKR (Physical Education, Health, Recreation)
¤ S1 Pancasila and Citizenship Education (PPKN)
¤ S1 Petroleum Engineering
¤ S1 Pharmaceuticals
¤ S1 Planning / Urban and Regional Planning Engineering
¤ S1 Political Sciences
¤ S1 Psychology
¤ S1 Public Health
¤ S1 Public/State Administration Science
¤ S1 Shipping Engineering
¤ S1 Social Welfare Studies
¤ S1 Sociology
¤ S1 Tarbiyah / Islamic Education
¤ S1 Ushuludin / Comparative Religion
¤ S1 Visual Communication Design
Graduate Programs (S-2)
¤ S2 Master of Management / MM

Three Diploma Programs (D-III)
¤ D3 Accounting
¤ D3 Accounting Computer
¤ D3 Business Travel (Business Tourism & Hospitality)
¤ D3 Computer Engineering (Computer Systems)
¤ D3 Electrical Engineering
¤ D3 Finance and Banking
¤ D3 Health Analyst
¤ D3 Informatics Management
¤ D3 Midwifery
¤ D3 MPRS (Hospital Services Management)
¤ D3 Nursing
¤ D3 Nutrition
¤ D3 Pharmaceutical and Food Analysts

Home       Forum : AgribusinessBuddhistChristian, CatholicConfucianEconomicFengshuiHinduHobbiesHumorIslamLaw



Tags: Barcode, Telecommunication Engineering, 2256, Barcode A UPC A barcode symbol A barcode is an optical machine readable representation of data relating to the object to which it is attached, Originally barcodes systematically represented data by varying the widths and spacings of parallel lines and may be referred to as linear or one dimensional (1D), Later they evolved into rectangles dots hexagons and other geometric patterns in two dimensi, Barcode, English, Instruction Examples, Tutorials, Reference, Books, Guide m.afternoon college program blended, prestasi.web.id
 Job Opportunities    Various Information    Graduate Program    Download Brochures
College Info
Accredited & Qualified
STMIKMJ Jakarta
STIE Gema
STIE IGI
STTM STIE WP
STEI Jogja
STIE Hidayatullah
STEBI Bina Essa
UMJ: FTan FISIP
Univ. Muhammadiyah Smrg
Univ. Muhammadiyah Sby
UNSUB
STMIK MJ UNKRIS
Univ. Thamrin: FE FASILKOM
ISTA ITBU
STIE Trianandra STIE IGI
STT Mandala Bandung
STMIK STIKOM Bali STTB
POLNAS Denpasar
Walisongo: STIEG STTG
STT Bina Tunggal Bks.
STIKI
UNDARIS Semarang
INDOCAKTI
UPRI
STIE Hidayatullah Depok
UNISA Dharma Andigha
University of Nusantara
UHAMZAH
UTS Makassar
STT Duta Bangsa
STIE GICI IMWI Sukabumi
UNAKI KAHURIPAN
STEI Jogja STIE Pemuda
University of Mpu Tantular
USCND Langsa
USM Indonesia STTM
UNUGHA UM Palangkaraya
STIE WD IKIP WD
STIE Ganesha Yuppentek
STT Muttaqien
STIT BATAM IAI AS
UCM STIE GEMA
University of Megou
STIE PIONEER
STIMAIMMI STIEABI
UPGRIS UICM Bandung
AL-AZHAR UNUSA
Tanri Abeng University
STIE AMKOP STIE WP
Univ. Boyolali UDB
UNIBA ITB AD
UNU KALBAR
Ubudiyah ISIF
STEBI Global Mulia
STT Sapta Taruna
Bali Dwipa University
UNU Kaltim UHS
IVET University
CENDEKIA STAI DB
STIE Mitra STiPSi
UNIPI Bandung
STIE Al-Rifa'ie
UNTARA Pelita Bangsa
Patria Artha
Widya Kartika University
UTN Bogor IGN Bogor
Parna Raya
STAI Terpadu Yogyakarta
STIT Al-Hikmah Lampung
Deli Sumatera University
STIA Bayuangga
UI Mandiri
STAI Muhammadiyah Probolinggo
STEBI Bina Essa
STAI Muhammadiyah Tulungagung
Politeknik Harapan Bangsa Surakarta
STIKes Sapta Bakti
ITeKes Tri Tunas Nasional
STEBI Badri Mashduqi
STIA Maulana Yusuf
STAI Miftahul Ulum
STIH Gunung Jati
STIE PPI Balaraja
Poltekkes Kerta Cendekia
ITB Pelita Raya
Poltek Ganesha
Universitas Moch. Sroedji
STIT Al-Hidayah Tasikmalaya
STIT Nur Ahadiyah
Politeknik Aisyiyah
Politeknik Santo Paulus Surakarta
IAI Al-Ghurabaa Jakarta
STAI AL Akbar Surabaya
Universitas Mahakarya Asia Yogyakarta
Politeknik Bhakti Kartini
Univ. Muhammadiyah Smrg
STMIK MJ UNKRIS
Thamrin: FE FASILKOM
STT Bina Tunggal Bks.
STIKI UNDARIS Semarang
INDOCAKTI
UPRI
STIE Hidayatullah Depok
UNISA Dharma Andigha
University of Nusantara
UHAMZAH
UTS Makassar
STT Duta Bangsa
STIE GICI IMWI Sukabumi
UNAKI KAHURIPAN
STEI Jogja STIE Pemuda
University of Mpu Tantular
USCND Langsa
USM Indonesia
UM Palangkaraya
UNUGHA STIE WD IKIP WD
STIE Ganesha Yuppentek
STT Muttaqien
University of Megou
STIE PIONEER
STIMAIMMI
AL-AZHAR UNUSA
Tanri Abeng University
STIE AMKOP STIE WP
Univ. Boyolali UDB
UNIBA ITB AD
UNU KALBAR
Ubudiyah ISIF
STEBI Global Mulia
STT Sapta Taruna
Bali Dwipa University
UNU Kaltim UHS
IVET University
CENDEKIA STAI DB
STIE Mitra STiPSi
UNIPI Bandung
STIE Al-Rifa'ie
UNTARA Pelita Bangsa
Patria Artha
Widya Kartika University
UTN Bogor IGN Bogor
Parna Raya
STAI Terpadu Yogyakarta
STIT Al-Hikmah Lampung
Deli Sumatera University
STIA Bayuangga
UI Mandiri
STAI Muhammadiyah Probolinggo
STEBI Bina Essa
STAI Muhammadiyah Tulungagung
Politeknik Harapan Bangsa Surakarta
STIKes Sapta Bakti
ITeKes Tri Tunas Nasional
STEBI Badri Mashduqi
STIA Maulana Yusuf
STAI Miftahul Ulum
STIH Gunung Jati
STIE PPI Balaraja
Poltekkes Kerta Cendekia
ITB Pelita Raya
Poltek Ganesha
Moch. Sroedji University
STIT Al-Hidayah Tasikmalaya
STIT Nur Ahadiyah
Politeknik Aisyiyah
Politeknik Santo Paulus Surakarta
IAI Al-Ghurabaa Jakarta
STAI AL Akbar Surabaya
Universitas Mahakarya Asia Yogyakarta
Politeknik Bhakti Kartini
MM STIE IGI
MIKOM, MIA Fisip Umj
MM STIE Ganesha
MM UNKRIS MM STIMAIMMI MM STIEABI
MM STIE Mitra MM UNTARA
MM UNKRIS MIKom Fisip UMJ MIA FISIP UMJ MM STIE Partner MM UNTARA MM Pelita Bangsa< /a>
MM STIE Ganesha
MM STIMAIMMI MM STIEABI
MM STIE IGI MM STIE GICI MKS ITB Ahmad Dahlan
MM IGN MKom IGN
KPT Higher Education Consultants
Chat with staff
Employee Class

(Please click below)
Admission / New Student
__Registration

Campus Locations & Maps
Study Program (D3, S1, S2)
___(+ Curriculum & Prospectus)

Master Program (S2)
Cost of Education
Education System
Lecture Time (Schedule)
Lecturers
Excellence & Advantages
Public Transportation
Request for Scholarship
List of Scholarship Recipients


PHOTO GALLERY

Advanced Program Web list
Gilland Group Site Network
Shift Class Adverts Web
Barterlink Web Network
Higher Education Consultants

Forums Set of Web
Adverts Set of Web
News Set of Web
Jobs Set of Web

Employee College Website list
Day Program Website list
Shift School Website list
S2 Program Website list
Portal Table Encyclopedia
Ensiklopedi Dunia List

 Regular Night Lecture Program    Try Out Practice Questions    Prayer Times    Al Qur'an Online    Informatics Books    Psychological Test Questions    Encyclopedia    Various Kinds Discussions    Online Registration    Scholarship Indonesia Submission    Hybrid College Programs in the Best 112 PTS    Free Tuition Fee    Executive Class    Day Tuition
Tell Your Friend's
Your name

Your email

Your Friend's email 1

Your Friend's email 2 (not required)
❦ must be filled in correctly

Brochure/Catalog Request
(FREE via POS)
Full name

Address

City & Province

Postal Code

Email (not required)

⛯ must be filled in correctly
Or send name and
Your address via SMS to mobile:
0811 1990 9028


FREE DOWNLOAD
Kelas Karyawan Brochure
Combined All Areas of Indonesia

PDF (11,2 MB)zip (8,8 MB)
Image/JPG (36,2 MB)
Kelas Karyawan Brochure
JABODETABEK

PDF (5,5 MB)zip (4,4 MB)
Image/JPG (13,2 MB)
Kelas Karyawan Brochure
Java and Bali

PDF (4,4 MB)zip (3,5 MB)
Image/JPG (14,5 MB)
Kelas Karyawan Brochure
West Java

PDF (2,8 MB)zip (2,2 MB)
Image/JPG (7,1 MB)
Kelas Karyawan Brochure
SULAWESI

PDF (1,9 MB)zip (1,5 MB)
Image/JPG (5,6 MB)
Kelas Karyawan Brochure
SUMATERA & BATAM

PDF (2,2 MB)zip (1,7 MB)
Image/JPG (6,5 MB)
Regular Program Brochure
PDF (4,1 Mb)zip (8,4 Mb)
National Calendar 2023
Image/JPG (2,1 Mb)PDF (400 kb)

New Solution
Strategies Increase
PTS revenue,
PTS Education Quality,
and PTS Resources
Full information, click
http://kpt.co.id

Vacancy

PT. Gilland Ganesha

  • Design Grafis
  • Senior Programmer

Detailed information visit:
web career

Cfsi, cleaning toilet cat, cat playing, etc.
155 cat breeds

Facebook Kuliah Karyawan

Helpful Link
(please click)
Prayer Times Indonesia
Science

suyanto.web.id  |  wiki-indonesia.web.id  |  duniakicau.web.id  |  unkris.my.id  |  kuliah-murah.web.id  |  mmunkris.ac.id  |  p2k-p2k.web.id  |  ftui.web.id  |  kebangkitan-pendidikan-indonesia.co.id  |  uin-al-azhaar.web.id  |  yarsipratama.web.id