m.afternoon-college-program-blended.prestasi.web.id 17 Hours Information Services
Tel/Fax : 021-8762002, 8762003, 8762004, 87912360
Mobile/SMS : 081 1110 4824 27, 0812 9526 2009, 08523 1234 000
WhatsApp : 0817 0816 486, 0812 9526 2009
email : _Contact Us__ please click
Chatting dengan Staf :
ggkarir.com
ggiklan.com
Select Language :     ID   EN   Request Catalog / Brochure (free via post)   Encyclopedia Job Vacancy Advert

   
Search  
    Computer Informatics

    Prev  (Magnetolithography) (magnussoft ZETA)  Next    

Magnetoresistive random-access memory

Magnetoresistive random-access memory (MRAM) is a non-volatile random-access memory technology under development since the 1990s. Continued increases in density of existing memory technologies – notably flash RAM and DRAM – kept it in a niche role in the market, but its proponents believe that the advantages are so overwhelming that magnetoresistive RAM will eventually become dominant for all types of memory, becoming a universal memory.[1]

Contents

Description

Unlike conventional RAM chip technologies, data in MRAM is not stored as electric charge or current flows, but by magnetic storage elements. The elements are formed from two ferromagnetic plates, each of which can hold a magnetic field, separated by a thin insulating layer. One of the two plates is a permanent magnet set to a particular polarity, the other's field can be changed to match that of an external field to store memory. This configuration is known as a spin valve and is the simplest structure for a MRAM bit. A memory device is built from a grid of such "cells".

The simplest method of reading is accomplished by measuring the electrical resistance of the cell. A particular cell is (typically) selected by powering an associated transistor that switches current from a supply line through the cell to ground. Due to the magnetic tunnel effect, the electrical resistance of the cell changes due to the orientation of the fields in the two plates. By measuring the resulting current, the resistance inside any particular cell can be determined, and from this the polarity of the writable plate. Typically if the two plates have the same polarity this is considered to mean "1", while if the two plates are of opposite polarity the resistance will be higher and this means "0".

Data is written to the cells using a variety of means. In the simplest, each cell lies between a pair of write lines arranged at right angles to each other, above and below the cell. When current is passed through them, an induced magnetic field is created at the junction, which the writable plate picks up. This pattern of operation is similar to core memory, a system commonly used in the 1960s. This approach requires a fairly substantial current to generate the field, however, which makes it less interesting for low-power uses, one of MRAM's primary disadvantages. Additionally, as the device is scaled down in size, there comes a time when the induced field overlaps adjacent cells over a small area, leading to potential false writes. This problem, the half-select (or write disturb) problem, appears to set a fairly large size for this type of cell. One experimental solution to this problem was to use circular domains written and read using the giant magnetoresistive effect, but it appears this line of research is no longer active.


A newer technique, spin transfer torque (STT) or spin transfer switching, uses spin-aligned ("polarized") electrons to directly torque the domains. Specifically, if the electrons flowing into a layer have to change their spin, this will develop a torque that will be transferred to the nearby layer. This lowers the amount of current needed to write the cells, making it about the same as the read process.[2] There are concerns that the "classic" type of MRAM cell will have difficulty at high densities due to the amount of current needed during writes, a problem that STT avoids. For this reason, the STT proponents expect the technique to be used for devices of 65 nm and smaller.[citation needed] The downside is the need to maintain the spin coherence. Overall, the STT requires much less write current than conventional or toggle MRAM. Research in this field indicates that STT current can be reduced up to 50 times by using a new composite structure.[3] However, higher speed operation still requires higher current.[4]

Other potential arrangements include "Thermal Assisted Switching" (TAS-MRAM), which briefly heats up (reminiscent of phase-change memory) the magnetic tunnel junctions during the write process and keeps the MTJs stable at a colder temperature the rest of the time;[5] and "vertical transport MRAM" (VMRAM), which uses current through a vertical column to change magnetic orientation, a geometric arrangement that reduces the write disturb problem and so can be used at higher density. [6]

A review paper [7] provides the details of materials and challenges associated with MRAM in the perpendicular geometry. The authors describe a new term called "Pentalemma" - which represents a conflict in five different requirements such as write current, stability of the bits, readability, read/write speed and the process integration with CMOS. The selection of materials and the design of MRAM to fulfill those requirements are discussed.

Simplified structure of an MRAM cell

Comparison with other systems

Density

The main determinant of a memory system's cost is the density of the components used to make it up. Smaller components, and fewer of them, mean that more "cells" can be packed onto a single chip, which in turn means more can be produced at once from a single silicon wafer. This improves yield, which is directly related to cost.

DRAM uses a small capacitor as a memory element, wires to carry current to and from it, and a transistor to control it – referred to as a "1T1C" cell. This makes DRAM the highest-density RAM currently available, and thus the least expensive, which is why it is used for the majority of RAM found in a computer.

MRAM is physically similar to DRAM in makeup, although often does not require a transistor for the write operation. However, as mentioned above, the most basic MRAM cell suffers from the half-select problem, which limits cell sizes to around 180 nm or more. T

Power consumption

Since the capacitors used in DRAM lose their charge over time, memory assemblies that use DRAM must refresh all the cells in their chips approximately 20 times a second, reading each one and re-writing its contents. As DRAM cells decrease in size, the refresh cycles become shorter, and the power-draw more continuous.

In contrast, MRAM never requires a refresh. This means that not only does it retain its memory with the power turned off but also there is no constant power-draw. While the read process in theory requires more power than the same process in a DRAM, in practice the difference appears to be very close to zero. However, the write process requires more power in order to overcome the existing field stored in the junction, varying from three to eight times the power required during reading.[8][9] Although the exact amount of power savings depends on the nature of the work – more frequent writing will require more power – in general MRAM proponents expect much lower power consumption (up to 99% less) compared to DRAM. STT-based MRAMs eliminate the difference between reading and writing, further reducing power requirements.

It is also worth comparing MRAM with another common memory system, flash RAM. Like MRAM, flash does not lose its memory when power is removed, which makes it very common as a "hard disk replacement" in small devices such as digital audio players or digital cameras. When used for reading, flash and MRAM are very similar in power requirements. However, flash is re-written using a large pulse of voltage (about 10 V) that is stored up over time in a charge pump, which is both power-hungry and time-consuming. In addition, the current pulse physically degrades the flash cells, which means flash can be written only to some finite number of times before it must be replaced.

In contrast, MRAM requires only slightly more power to write than read, and no change in the voltage, eliminating the need for a charge pump. This leads to much faster operation, lower power consumption, and an indefinitely long "lifetime".

Performance

DRAM performance is limited by the rate at which the charge stored in the cells can be drained (for reading) or stored (for writing). MRAM operation is based on measuring voltages rather than charges or currents, so there is less "settling time" needed. IBM researchers have demonstrated MRAM devices with access times on the order of 2 ns, somewhat better than even the most advanced DRAMs built on much newer processes.[10] A team at the German Physikalisch-Technische Bundesanstalt have demonstrated MRAM devices with 1 ns settling times, better than the currently accepted theoretical limits for DRAM, although the demonstration was a single cell.[11] The differences compared to flash are far more significant, with write times as much as thousands of times faster.

The only current memory technology that easily competes with MRAM in terms of performance is static RAM, or SRAM. SRAM consists of a series of transistors arranged in a flip-flop, which will hold one of two states as long as power is applied. Since the transistors have a very low power requirement, their switching time is very low. However, since an SRAM cell consists of several transistors, typically four or six, its density is much lower than DRAM. This makes it expensive, which is why it is used only for small amounts of high-performance memory, a notable one being the CPU cache in almost all modern CPU designs.

Although MRAM is not quite as fast as SRAM, it is close enough to be interesting even in this role. Given its much higher density, a CPU designer may be inclined to use MRAM to offer a much larger but somewhat slower cache, rather than a smaller but faster one. It remains to be seen how this trade-off will play out in the future.

Overall

MRAM has similar performance to SRAM, similar density of DRAM but much lower power consumption than DRAM, and is much faster and suffers no degradation over time in comparison to flash memory. It is this combination of features that some suggest make it the "universal memory", able to replace SRAM, DRAM, EEPROM, and flash. This also explains the huge amount of research being carried out into developing it.

However, to date, MRAM has not been as widely adopted in the market as other non-volatile RAMs. It may be that vendors are not prepared to take the risk of allocating a modern fab to MRAM production when such fabs cost upwards of a few billion dollars to build and can instead generate revenue by serving developed markets producing flash and DRAM memories.

The very latest fabs seem to be used for flash, for example producing 16 Gbit parts produced by Samsung on a 50 nm process.[12] Slightly older fabs are being used to produce most DDR2 DRAM, most of which is produced on a one-generation-old 90 nm process rather than using up scarce leading-edge capacity.

In comparison, MRAM is still largely "in development", and being produced on older non-critical fabs. The only commercial product widely available at this point is Everspin's 4 Mbit part, produced on a several-generations-old 180 nm process. As demand for flash continues to outstrip supply, it appears that it will be some time before a company can afford to "give up" one of their latest fabs for MRAM production. Even then, MRAM designs currently do not come close to flash in terms of cell size, even using the same fab.[citation needed]

Alternatives to MRAM

Flash and EEPROM's limited write-cycles are a serious problem for any real RAM-like role, however. In addition, the high power needed to write the cells is a problem in low-power roles, where non-volatile RAM is often used. The power also needs time to be "built up" in a device known as a charge pump, which makes writing dramatically slower than reading, often as much as 1,000 times. While MRAM was certainly designed to address some of these issues, a number of other new memory devices are in production or have been proposed to address these shortcomings.

To date, the only such system to enter widespread production is ferroelectric RAM, or F-RAM (sometimes referred to as FeRAM). F-RAM is a random-access memory similar in construction to DRAM but (instead of a dielectric layer like in DRAM) contains a thin ferroelectric film of lead zirconate titanate [Pb(Zr,Ti)O3], commonly referred to as PZT. The Zr/Ti atoms in the PZT change polarity in an electric field, thereby producing a binary switch. Unlike RAM devices, F-RAM retains its data memory when power is shut off or interrupted, due to the PZT crystal maintaining polarity. Due to this crystal structure and how it is influenced, F-RAM offers distinct properties from other nonvolatile memory options, including extremely high endurance (exceeding 1016 for 3.3 V devices), ultra low power consumption (since F-RAM does not require a charge pump like other non-volatile memories), single-cycle write speeds, and gamma radiation tolerance.[13] Ramtron International has developed, produced, and licensed ferroelectric RAM (F-RAM).

Another solid-state technology to see more than purely experimental development is Phase-change RAM, or PRAM. PRAM is based on the same storage mechanism as writable CDs and DVDs, but reads them based on their changes in electrical resistance rather than changes in their optical properties. Considered a "dark horse" for some time, in 2006 Samsung announced the availability of a 512 Mb part, considerably higher capacity than either MRAM or FeRAM. The areal density of these parts appears to be even higher than modern flash devices, the lower overall storage being due to the lack of multi-bit encoding. This announcement was followed by one from Intel and STMicroelectronics, who demonstrated their own PRAM devices at the 2006 Intel Developer Forum in October. One of the most attended sessions in the IEDM December 2006 was the presentation by IBM of their PRAM technology.

Also seeing renewed interest is silicon-oxide-nitride-oxide-silicon (SONOS) memory.

History

Most of the following has been taken from mram-info web site:

  • 1955 – Magnetic core memory had the same reading writing principle as MRAM
  • 1988 – European scientists (Albert Fert and Peter Grünberg) discovered the "giant magnetoresistive effect" in thin-film structures.
  • 1995 – Motorola (later to become Freescale) initiates work on MRAM development
  • 2000 – IBM and Infineon established a joint MRAM development program.
  • 2000 – Spintec laboratory's first Spin Torque Transfer patent.
  • 2002 – NVE Announces Technology Exchange with Cypress Semiconductor.
  • 2003 – A 128 kbit MRAM chip was introduced, manufactured with a 180 nm lithographic process

2004

  • June – Infineon unveiled a 16-Mbit prototype, manufactured with a 180 nm lithographic process
  • September – MRAM becomes a standard product offering at Freescale.
  • October – Taiwan developers of MRAM tape out 1 Mbit parts at TSMC.
  • October – Micron drops MRAM, mulls other memories.
  • December – TSMC, NEC, Toshiba describe novel MRAM cells.
  • December – Renesas Technology trumpets a high performance, high-reliability MRAM technology.
  • Spintech laboratory's first observation of Thermal Assisted Switching (TAS) as MRAM approach.
  • Crocus Technology is founded; the company is a developer of second-generation MRAM

2005

  • January – Cypress Semiconductor samples MRAM, using NVE IP.
  • March – Cypress to Sell MRAM Subsidiary.
  • June – Honeywell posts data sheet for 1-Mbit rad-hard MRAM using a 150 nm lithographic process
  • August – MRAM record: memory cell runs at 2 GHz.
  • November – Renesas Technology and Grandis collaborate on development of 65 nm MRAM employing spin torque transfer (STT).
  • November – NVE receives an SBIR grant to research cryptographic tamper-responsive memory.[14]
  • December – Sony announced the first lab-produced spin-torque-transfer MRAM, which utilizes a spin-polarized current through the tunneling magnetoresistance layer to write data. This method consumes less power and is more scalable than conventional MRAM. With further advances in materials, this process should allow for densities higher than those possible in DRAM.
  • December – Freescale Semiconductor Inc. demonstrates an MRAM that uses magnesium oxide, rather than an aluminum oxide, allowing for a thinner insulating tunnel barrier and improved bit resistance during the write cycle, thereby reducing the required write current.
  • Spintec laboratory gives Crocus Technology exclusive license on its patents.

Current status

2006

  • February – Toshiba and NEC announced a 16 Mbit MRAM chip with a new "power-forking" design. It achieves a transfer rate of 200 MB/s, with a 34 ns cycle time – the best performance of any MRAM chip. It also boasts the smallest physical size in its class — 78.5 square millimeters — and the low voltage requirement of 1.8 volts.[15]
  • July – On July 10, Austin Texas – Freescale Semiconductor begins marketing a 4-Mbit MRAM chip, which sells for approximately $25.00 per chip.[16]

2007

  • R&D moving to spin transfer torque RAM (SPRAM)
  • February – Tohoku University and Hitachi developed a prototype 2 Mbit Non-Volatile RAM Chip employing spin-transfer torque switching.[17]
  • August – "IBM, TDK Partner In Magnetic Memory Research on Spin Transfer Torque Switching" IBM and TDK to lower the cost and boost performance of MRAM to hopefully release a product to market.[18]
  • November – Toshiba applied and proved the spin transfer torque switching with perpendicular magnetic anisotropy MTJ device.[19]
  • November – NEC Develops World's Fastest SRAM-Compatible MRAM With Operation Speed of 250 MHz.[20]

2008

  • Japanese satellite, SpriteSat, to use Freescale MRAM to replace SRAM and FLASH components [21]
  • June – Samsung and Hynix become partner on STT-MRAM [1]
  • June – Freescale spins off MRAM operations as new company Everspin [2]
  • August – Scientists in Germany have developed next-generation MRAM that is said to operate as fast as fundamental performance limits allow, with write cycles under 1 nanosecond.

2009

  • June – Hitachi and Tohoku University demonstrated a 32-Mbit spin-transfer torque RAM (SPRAM).[3]
  • June – Crocus Technology and Tower Semiconductor announce deal port Crocus' MRAM process technology to Tower's manufacturing environment[22]

2010

  • June – Hitachi and Tohoku Univ announced Multi-level SPRAM [4]

2011

  • March – PTB, Germany, announces having achieved a below 500 ps (2GBit/s) write cycle[23]

2012

  • November - Chandler, AZ, USA, Everspin debuts 64Mb ST-MRAM [24]

Applications

Proposed uses for MRAM include devices such as:

See also

References

  1. ^ Johan Åkerman, "Toward a Universal Memory", Science, Vol. 308. no. 5721 (22 April 2005), pp. 508 – 510, doi:10.1126/science.1110549
  2. ^ "Renesas, Grandis to Collaborate on Development of 65 nm MRAM Employing Spin Torque Transfer", 1 December 2005
  3. ^ "Lower Switching Current for Spin-Torque Transfer in Magnetic Storage Devices such as Magnetoresistive Random Access Memory (MRAM)". University of Minnesota. http://www.license.umn.edu/Products/Lower-Switching-Current-for-Spin-Torque-Transfer-in-Magnetic-Storage-Devices-such-as-Magetoresistive-Random-Access-Memory-%28MRAM%29__Z09007.aspx. Retrieved 15 August 2011.
  4. ^ Y. Huai, AAPPS Bulletin, December 2008, vol. 18, no. 6, p.33, "Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects."
  5. ^ GSA Article.pdf
  6. ^ "How MRAM Works"
  7. ^ [ http://onlinelibrary.wiley.com/doi/10.1002/pssr.201105420/full R. Sbiaa, H. Meng and S.N. Piramanayagam, Materials with perpendicular magnetic anisotropy for magnetic random access memory]
  8. ^ William J. Gallagher and Stuart S. P. Parkin, "Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip", IBM, 24 January 2006
  9. ^ Rajagopalan Desikan et all, "On-chip MRAM as a High-Bandwidth, Low-Latency Replacement for DRAM Physical Memories", Department of Computer Sciences, University of Texas at Austin, 27 September 2002
  10. ^ "Past, Present and Future of MRAM", NIST Magnetic Technology, 22 July 2003
  11. ^ Kate McAlpine, "Spin flip trick points to fastest RAM yet", NewScientist, 13 August 2008
  12. ^ "SAMSUNG Samples First 50-nanometer 16Gb NAND Flash for Solid State Disk and Other High-density Applications" (Press release). Samsung. 2007-01-03. http://www.samsung.com/PressCenter/PressRelease/PressRelease.asp?seq=20070103_0000309157. Retrieved 2007-01-03.
  13. ^ http://www.ramtron.com/about-us/what-is-f-ram.aspx
  14. ^ SBIR Phase I: Zero-Remanence Tamper-Responsive Cryptokey Memory
  15. ^ "Toshiba and NEC Develop World's Fastest, Highest Density MRAM" (Press release). NEC Corporation. 2006-02-07. http://www.nec.co.jp/press/en/0602/0702.html. Retrieved 2006-07-10.
  16. ^ "Freescale Leads Industry in Commercializing MRAM Technology" (Press release). Freescale Semiconductor. 2006-07-10. http://media.freescale.com/phoenix.zhtml?c=196520&p=irol-newsArticle&ID=880030. Retrieved 2006-07-10.
  17. ^ "Prototype 2 Mbit Non-Volatile RAM Chip Employing Spin-Transfer Torque Writing Method" (Press release). Hitachi Ltd.. 2007-02-13. http://www.hitachi.com/New/cnews/070213.html. Retrieved 2007-02-13.
  18. ^ "IBM and TDK Launch Joint Research & Development Project for Advanced MRAM" (Press release). IBM. 2007-08-19. http://www-03.ibm.com/press/us/en/pressrelease/22180.wss. Retrieved 2007-08-22.
  19. ^ "Toshiba develops new MRAM device that opens the way to giga-bits capacity" (Press release). Toshiba Corporation. 2007-11-06. http://www.toshiba.co.jp/about/press/2007_11/pr0601.htm. Retrieved 2007-11-06.
  20. ^ "NEC Develops World's Fastest SRAM-Compatible MRAM With Operation Speed of 250MHz." (Press release). NEC Corporation. 2007-11-30. http://www.nec.co.jp/press/en/0711/3001.html. Retrieved 2007-12-01.
  21. ^ Japanese Satellite First to Use Magnetic Memory: Scientific American
  22. ^ http://www.crocus-technology.com/pr-06-18-09.html
  23. ^ "Extremely fast MRAM data storage within reach" (Press release). PTB. 2011-03-08. http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2011/pitext/pi110308.html. Retrieved 2011-03-09.
  24. ^ http://www.everspin.com/PDF/ST-MRAM_Press_Release.pdf

External links

    Prev  (Magnetolithography) (magnussoft ZETA)  Next    


World Encyclopedia ➪ AgricultureAnimalArtAstronomyBiographyCharacterChemicalCultureEcologyEconomicsEducationElectronics
EnvironmentFilmGeographyHistoryIndonesiaJabodetabekLanguageLawLiteratureMathematicsMedical
MilitaryMusicMythologyPhilosophyPhysicsPlantPoliticalPuppetReligionScienceSocietySportsTechnology
Manual / Tutorial   ➪ AntApache ServerHTML 4HTML 5JavaScriptMySQLPerlPHPLinuxShell       Network Encyclopedia
Web Network ➪ Employee ClassRegularEvening ClassS2PTSPartyGeneral    
Reference ➪ Internet, Computers, ICT, OS, etc

  » Cyber University   » Fakultas Pertanian UMJ Jakarta   » Fakultas Teknik UMJ   » FISIP UMJ Jakarta   » FKM UMJ   » IBI Kosgoro Jagakarsa   » IBI Kosgoro Jelambar
  » IKIP Widya Darma Surabaya   » IMA   » ISIF Cirebon   » ISTA Jakarta   » ITB STIKOM Bali   » ITBU Jakarta   » ITEKES Tri Tunas Nasional Makassar
  » Magister Universitas Buddhi Dharma   » Magister Universitas Satyagama   » MH UM SURABAYA   » MH UNKRIS Jakarta   » MIA FISIP UMJ Jakarta   » MIA UNKRIS Jakarta   » MIKOM FISIP UMJ Jakarta
  » MM Patria Artha Makassar   » MM STIE ABI Surabaya   » MM STIE Ganesha Jakarta   » MM STIE GICI Business School Jakarta   » MM UMIBA Jakarta   » MM UNKRIS Jakarta   » MPD UM SURABAYA
  » Mpu Tantular Kedoya Jakarta   » MT UNKRIS Jakarta   » Polnas Denpasar   » S2 FISIP UMJ Jakarta   » S2 FT UMJ   » S2 NUSA MANDIRI   » S2 STMIK Jakarta
  » S2 UIN Al-Azhaar Lubuklinggau   » S2 UM SURABAYA   » S2 UNKRIS Jakarta   » S2 UNSURYA   » Sekolah Tinggi Bisnis Runata   » STAI Al-Akbar Surabaya   » STAI Al-Andina Sukabumi
  » STAI Al-Hidayah Tasikmalaya   » STAI Al-Ittihad Cianjur   » STAI Terpadu Yogyakarta   » STBA Lia Yogyakarta   » STEI SEBI Depok   » STEI Yogyakarta   » STIBADA MASA Surabaya
  » STIE ABI Surabaya   » STIE Cendekia Semarang   » STIE Ganesha Jakarta   » STIE GICI Business School Bogor   » STIE GICI Business School Depok   » STIE GICI Business School Bekasi   » STIE GICI Business School Jakarta
  » STIE Hidayatullah Depok   » STIE Indocakti Malang   » STIE PASIM Sukabumi   » STIE PEMUDA Surabaya   » STIE Pioneer Manado   » STIE Trianandra Jakarta   » STIE Widya Darma Surabaya
  » STIE Widya Persada Jakarta   » STIEKIA Bojonegoro   » STIESIA Surabaya   » STIH Awang Long Samarinda   » STIH Gunung Jati Tangerang   » STIH Litigasi Jakarta   » STIH Prof Gayus Lumbuun
  » STIT Al-Hikmah Lampung   » STIT Bustanul Ulum   » STIT Tarbiyatun Nisa Sentul Bogor   » STMIK Jakarta   » STT Bina Tunggal Bekasi   » STT Mandala Bandung   » STT STIKMA Internasional
  » UBHINUS   » UHAMZAH Medan   » UICM Bandung   » UIN Al-Azhaar Lubuklinggau   » UM Palangkaraya   » UM Surabaya   » UNAKI Semarang
  » UNAS   » UNAS PASIM   » UNDARIS Ungaran Semarang   » UNIBA Banyuwangi   » UNISA Kuningan Jawa Barat   » UNISBA   » Univ. Bali Dwipa Denpasar Bali
  » Universitas Boyolali   » Universitas Buddhi Dharma   » Universitas Cokroaminoto Makassar   » Universitas Deli Sumatera   » Universitas Gresik   » Universitas IVET Semarang   » Universitas Kahuripan Kediri
  » Universitas LIA   » Universitas Mahakarya Asia Yogyakarta   » Universitas Mitra Bangsa   » Universitas Mochammad Sroedji Jember   » Universitas Mpu Tantular Jakarta   » Universitas Muhammadiyah Jakarta   » Universitas Musi Rawas Lubuklinggau
  » Universitas Nurtanio   » Universitas Nurul Huda Oku Timur   » Universitas Nusa Mandiri Jatiwaringin   » Universitas Nusa Mandiri Kramat   » Universitas Nusa Mandiri Margonda   » Universitas Nusantara Manado   » Universitas Pandanaran Semarang
  » Universitas Parna Raya Manado   » Universitas Patria Artha Makassar   » Universitas Satyagama   » Universitas Tanri Abeng Jakarta   » Universitas Teknologi Bandung   » Universitas Teknologi Nusantara   » Universitas Teknologi Sulawesi Makassar
  » Universitas Ubudiyah Indonesia Aceh   » Universitas Wijaya Kusuma Surabaya   » Universitas Yarsi Pratama   » Universitas Yuppentek Indonesia   » UNKRIS Jakarta   » UNSUB Subang   » UNSURYA Jakarta
  » UNU Cirebon   » UNU Kalbar Pontianak   » UNU Kaltim Samarinda   » UNUGHA Cilacap   » UNUSIDA   » USM Indonesia Medan   » UWIKA Surabaya
Combined Information Employee Class entire PTS

Al Quran onlineAdvertisingBarter Link232 Countries155 Types of CatsCity & Province WebsitesCPNSComplete POS codeCorruption Rating
Embassy:  KBRI  Foreign  • Exercise Psychotest  • Civitasbook.com  • Hosting: ID World  • Info Prov, City, District, Village  • International Organizations
Islands in NKRIJob VacancyLibrariesNews & Magazine: ID ForeignNKRI, KPK, MA, etc.Political PartyPatriotPTAPTNPTSHospitalRanch
ScholarshipSholat & Imsak ScheduleSMASMKSMPTV & Radio : Foreign IDFootballWorld Statistics     Academic : Majors Prospectus

Department/Study Program (D3, S1, S2), Curriculum, Prospectus (Career Prospects), and Title/Degree
Undergraduate Programs (S-1)
¤ S1 Accounting
¤ S1 Agribusiness
¤ S1 Agricultural Sciences
¤ S1 Agroteknologi (Agricultural Industry Technology)
¤ S1 Akhwal al Syakhsiyyah / Civil Law of Islam (Sharia)
¤ S1 Animal Sciences
¤ S1 Architectural Engineering
¤ S1 Biology Education
¤ S1 Business/Commerce Administration Science
¤ S1 Chemical Engineering
¤ S1 Civil Engineering
¤ S1 Communication Studies
¤ S1 Computer Engineering / Computer Systems
¤ S1 ECD (Early Childhood Teacher Education)
¤ S1 Electrical Engineering
¤ S1 English Education
¤ S1 English Language / Literature
¤ S1 Food Technology
¤ S1 Indonesian Language and Literature Education
¤ S1 Industrial Engineering
¤ S1 Industrial Product Design
¤ S1 Informatics Engineering
¤ S1 Information System
¤ S1 International Relations
¤ S1 Law/Legal Studies
¤ S1 Management
¤ S1 Mathematics Education
¤ S1 Mechanical Engineering
¤ S1 Nursing
¤ S1 OPJKR (Physical Education, Health, Recreation)
¤ S1 Pancasila and Citizenship Education (PPKN)
¤ S1 Petroleum Engineering
¤ S1 Pharmaceuticals
¤ S1 Planning / Urban and Regional Planning Engineering
¤ S1 Political Sciences
¤ S1 Psychology
¤ S1 Public Health
¤ S1 Public/State Administration Science
¤ S1 Shipping Engineering
¤ S1 Social Welfare Studies
¤ S1 Sociology
¤ S1 Tarbiyah / Islamic Education
¤ S1 Ushuludin / Comparative Religion
¤ S1 Visual Communication Design
Graduate Programs (S-2)
¤ S2 Master of Management / MM

Three Diploma Programs (D-III)
¤ D3 Accounting
¤ D3 Accounting Computer
¤ D3 Business Travel (Business Tourism & Hospitality)
¤ D3 Computer Engineering (Computer Systems)
¤ D3 Electrical Engineering
¤ D3 Finance and Banking
¤ D3 Health Analyst
¤ D3 Informatics Management
¤ D3 Midwifery
¤ D3 MPRS (Hospital Services Management)
¤ D3 Nursing
¤ D3 Nutrition
¤ D3 Pharmaceutical and Food Analysts

Home       Forum : AgribusinessBuddhistChristian, CatholicConfucianEconomicFengshuiHinduHobbiesHumorIslamLaw



Tags: Magnetoresistive random-access memory, Computer Informatics, 2256, Magnetoresistive random access memory Computer memory types Volatile RAM DRAM (e.g, DDR SDRAM ) SRAM In development T RAM Z RAM TTRAM Historical Williams Kilburn tube (1946 47) Delay line memory (1947) Selectron tube (1953) Dekatron Non volatile ROM Mask ROM PROM EPROM EEPROM NVRAM Flash memory Early stage NVRAM nvSRAM FeRAM MRAM PRAM Mechanical Magnetic tape Hard drive Optical drive In developme, Magnetoresistive random-access memory, English, Instruction Examples, Tutorials, Reference, Books, Guide m.afternoon college program blended, prestasi.web.id
 Various Ads    Blended Tuition Programs in the Best 112 PTS    Online Registration    Job Exchange
Regular Classes (Online Lectures)

Objectives
Welcome
Student Admission
Request Scholarships
Quickly get a Job
List of Websites Regular Night Course
List of Websites Main
List of Websites Regular Morning College
List of Websites Graduate Class
List of Websites Businessman School

 Businessman School    Graduate Class    Regular Morning College Program    Regular Night Course    Online Try Out Platform    Sholat Times    Al Quran Online    Technical Information Manual    Psychological Test Questions    Science    Various Forums    Waivers Tuition Submission    Download Brochures    Tuition free of charge Program
Special Links
Education
PTS Distinguished & Notable
Bachelor, Diploma (D3)

Memilih wadah germinasi, Manfaat Bidara, Merawat tanaman / tumbuhan Kenikir, etc.
Menanam benih Delima di polybag

Helpful Link
(please click)
All Knowledge
Classified Adverts, Banner
Link to Web Classified Adverts, Banner :
Main Link Classified Adverts, Banner
Minister Research & Technology
Reseller Bekasi
SMA in Garut
Travel locations & countries map

kelaskaryawan.machung.ac.id  |  kelaskaryawan.stmikmj.ac.id  |  stit-alhidayah.web.id  |  p2k.sttyuppentek.ac.id  |  staitbiasjogja.web.id  |  stit-alhikmahwk.web.id  |  p2k.surapati.ac.id  |  p2k.umptuba.ac.id  |  p2k.stia-bayuangga.ac.id  |  staialakbarsurabaya.web.id  |  unnur.web.id